Ha habido un avance considerable desde el tamaño de los primeros ordenadores hasta ahora. Se han miniaturizado los dispositivos de almacenamiento de información:
ACTIVIDAD: Contesta en el BLOG Realiza una tabla con los distintos sistemas de almacenamiento que conozcas. Indicando, si es óptico o magnético; qué capacidad pueden tener, etc.
ACTIVIDAD 1 - Parte 1: Crea en el blog una entrada llamada DIGITALIZANDO IMÁGENES y contesta a la pregunta 1.
1. Glosario de términos. Define:
a) Pixel.
b) Color primario.
c) Dimensión (de una fotografía)
d) Escanear (una imagen)
e) Resolución
ACTIVIDAD - Parte 2:Tras conocer estos términos, te resultará más sencilla la lectura del texto que se os entrega. Tras la lectura, deberéis responder en un folio aparte (para entregar) a las siguientes preguntas:
2. ¿Cómo se puede digitalizar una imagen?
3. ¿Qué diferencia hay entre las imágenes en color y en blanco y negro?
4. ¿Cómo podemos aumentar la resolución de una imagen?
¿Cómo se han obtenido los distintos colores a lo largo de la historia? EL MODELO HSV (o HSB)
ACTIVIDAD:Realiza una entrada en el BLOG en la que expliques en qué se basa este modelo. (¿En qué se basa? ¿Qué es Hue/Value/Saturation?...) ¿Qué diferencias hay con el modelo RGB?
¿Qué células especializadas se encuentran en la retina humana? ¿Qué diferencias puedes encontrar? Explica la percepción humana del color.
EL MODELO RGB:
Existe una codificación de colores en HTML, en el que se le da a cada color un código y se utiliza en el diseño de páginas webs (el color de fondo del sitio web, el color del texto, de las celdas en las tablas, etc.)
Significado de los símbolos:
Significado de los símbolos:
Los dos primeros símbolos del código de color HTML representan la intensidad del color rojo. 00 es el menos intenso y FF es el más intenso.
El tercer y el cuarto número representan la intensidad del verde y el quinto y el sexto representan la intensidad del azul.
Así, con esta combinación de la intensidad del rojo, verde y azul podemos mezclar cualquier color. Ejemplos:
#FF0000 - Con este código HTML le decimos al navegador que muestre la máxima cantidad de rojo y nada de verde ni de azul.
El resultado es evidentemente el color rojo puro: #00FF00 - Este código HTML muestra solo el verde y nada de rojo ni de azul. El resultado es: #0000FF - Este código HTML muestra solo el azul y nada de rojo ni de verde. El resultado es: #FFFF00 - Con la combinación de color rojo y verde obtenemos el amarillo: #CCEEFF - Cogemos un poco de rojo, un poco más de verde y el máximo de azul para obtener el color del cielo:
Aquí tenéis una descripción de los colores html nombrados con su nombre
ACTIVIDAD:Realiza una entrada en el blog (Modelo RGB) explicando la codificación hexadecimal de color en la cual se basa el modelo RGB.
Las isometrías ("iso", igual; "metría", medida) son transformaciones de figuras en el plano conservando la forma y el tamaño. Una figura en el plano sufre una transformación cuando cambia su posición en él. Existen cuatro tipos de isometrías planas:
Traslación (T). La figura plana se desplaza en el plano cierta distancia en determinada dirección. "Se mueve en línea recta"
Rotación o Giro (G). La figura gira cierto ángulo respecto a un punto llamado centro de rotación.
Reflexión o Simetría axial (S). La figura se da la vuelta o sufre un giro espacial de 180º alrededor de una recta llamada eje de reflexión o de simetría. Un ejemplo típico del resultado es la reflexión especular o la imagen que se forma en un espejo.
Reflexión Desplazada (D). La figura plana se refleja y se traslada a la vez. Se produce porque el eje de reflexión también gira. Equivale a realizar una isometría S y T, una tras otra.
En la siguiente Actividad podrás conocer las principales características.
"Pavimentado" o cubrir superficies con un patrón de formas planas, sin dejar huecos y sin que superpongan. Pueden ser regulares (periódicas) o semiregulares (aperiódicas). Ejemplos
Merece la pena visitar la siguiente galería de arte del pintor M.C. Escher y su dominio de la simetría. Maestro de las teselaciones aperiódicas. (Picture gallery => Symmetry) Para profundizar sobre Escher