Páginas

domingo, 2 de octubre de 2016

De la formación del Universo a las capas de la Tierra

ORIGEN DEL UNIVERSO




ORIGEN DE LA TIERRA



LAS CAPAS DE LA TIERRA



REFLEXIONA: 
¿Qué capa de la Tierra es más importante para la formación y mantenimiento del suelo?


viernes, 8 de abril de 2016

Cinemática. El movimiento.

CINEMÁTICA. EL MOVIMIENTO.

1. INTRODUCCIÓN A LA CINEMÁTICA.

2. MAGNITUDES CINEMÁTICAS
   A. TRAYECTORIA
   B. DESPLAZAMIENTO
   C. VELOCIDAD
   D. ACELERACIÓN

3. CLASIFICACIÓN DE LOS MOVIMIENTOS:

   A. MRU
   B. MRUA
   C. MCU

1. INTRODUCCIÓN A LA CINEMÁTICA.

La Cinemática (del griego, kineo, movimiento) es la parte de la Mecánica que estudia el movimiento sin tener en cuenta las causas que lo producen.

Un cuerpo está en movimiento si cambia su posición en el espacio con respecto a un determinado Sistema de Referencia (O) que normalmente se considera fijo.

Un cuerpo está en reposo si su posición respecto a un Sistema de Referencia no cambia durante el transcurso de, otra magnitud fundamental e importante en cinemática, el tiempo.

Por tanto, es importante para describir un movimiento indicar respecto a qué sistema de referencia se han tomado las medidas: 
No es lo mismo describir el movimiento de un coche observado desde la acera mientras esperamos para cruzar un paso de peatones, que respecto a otro coche que lo está adelantando, ¿verdad?

Concluímos que tanto el reposo como movimiento son conceptos relativos ya que dependen del sistema de referencia que tomemos.



2. MAGNITUDES CINEMÁTICAS o las propiedades que describen el movimiento.

Magnitud es toda aquella propiedad de un cuerpo o fenómeno que puede ser medida. En cinemática, además de la magnitud fundamental tiempo, utilizaremos:
- La magnitud fundamental LONGITUD aparece implícita en el DESPLAZAMIENTO y la TRAYECTORIA, ¡que no son lo mismo!
- Dos magnitudes derivadas: la VELOCIDAD y la ACELERACIÓN, que además son magnitudes vectoriales; es decir, dependen del sentido y de la dirección del movimiento.

A. TRAYECTORIA.

Depende del Sistema de Referencia elegido para estudiar el movimiento. Se denomina trayectoria al camino seguido por el cuerpo estudiado durante su movimiento
El espacio (S) que recorre un cuerpo en su movimiento se define como la longitud de la trayectoria recorrida. Se mide en metros.

Definamos::
- POSICIÓN: lugar que ocupa el móvil en un instante respecto al sistema de referencia.
- MÓVIL: Es el cuerpo cuyo estado de reposo o movimiento se está estudiando.

B. VECTOR DESPLAZAMIENTO (Δx).

Es la distancia que existe entre dos puntos del recorrido en el sentido del movimiento. Solo coincide con la trayectoria cuando el movimiento es rectilíneo.


EJERCICIO 1: Un móvil en un instante determinado se encuentra en la posición (1,6), unos segundo más tarde, pasa a ocupar la posición determinada por el punto (3,7), determina cuál es su desplazamiento y su trayectoria.

C. VELOCIDAD (v).



La velocidad es la magnitud física que estudia la variación de la posición de un cuerpo en función del tiempo respecto a un determinado sistema de referencia. En el SI sus unidades son m/s; aunque también se puede expresar de otras formas en función del móvil en estudio: km/h, cm/s, etc.


Distingamos entre velocidad media y velocidad instantánea.

- VELOCIDAD MEDIA:



Supongamos un móvil (representado por un punto) que se ha desplazado del punto 1 (P1) al 2 (P2) describiendo la siguiente trayectoria:

También se puede calcular la velocidad media respecto de la trayectoria S. En algunos libros la llaman celeridad o rapidez y se calcula dividiendo el espacio recorrido entre el tiempo que el móvil ha tardado en recorrerlo.



- VELOCIDAD INSTANTÁNEA:

Es la velocidad que nos indicaría un velocímetro, es decir, la velocidad en ese mismo instante. 

Para saber más:


Nota: En 1º Bachillerato contemplarás su tratamiento vectorial



Concluimos que la velocidad es un vector cuya dirección y sentido coinciden con los del vector desplazamiento.

¿Qué es un vector?
Como has visto, muchas magnitudes cinemáticas son vectoriales (el vector desplazamiento, la velocidad y la aceleración). Un vector no es más que una herramienta matemática muy utilizada y necesaria en Física. Un vector es un segmento orientado (similar a una flecha) se suele representar con una letra minúscula o dos mayúsculas (origen y final) con una flecha arriba. En un vector se distinguen las siguientes componentes:



EJERCICIO 2: Calcula el espacio que recorre un móvil que se desplaza con velocidad constante de 15 m/s durante 20 s


D. ACELERACIÓN (a).


Se define como la variación de la velocidad respecto al tiempo. Su unidad en el SI suele ser m/s2.
Existe aceleración siempre que la velocidad de un cuerpo cambia ya sea porque:
- Aumenta su velocidad (acelera)
- Disminuye su velocidad (frena)
- Cambia de dirección (gira)

EJERCICIO 3: Calcula la aceleración de un coche que va con una velocidad de 80 km/h y pasa a 120 km/h  en 8 segundos.


No te habrá costado mucho llegar a su expresión matemática o fórmula:

- ACELERACIÓN MEDIA: Estudia el cambio de velocidad en un intervalo de tiempo.
- ACELERACIÓN INSTANTÁNEA:
EJERCICIO 4: Un cuerpo que va con una velcidad de 4 m/s frena de repente con una aceleración de 0,5 m/s2 calcula cuanto tiempo tarda en detenerse.


2. CLASIFICACIÓN DE LOS MOVIMIENTOS

CRITERIOS:

1.- Según la trayectoria:
- Rectilíneos: su trayectoria es una línea recta
- Curvilíneos: su trayectoria no es recta. Se incluyen aquí el movimiento circular y el ondulatorio.

2.- Según la velocidad:
- Uniforme: el valor de la velocidad no cambia.
- Variados (no uniformes porque su velocidad aumenta o disminuye, acelerado o desacelerado).



Existen: 
- Movimientos sin aceleración (aclaro: debida al cambio del valor de la velocidad): Movimientos uniformes (MRU, MCU)
¡OJO! En el MCU existe aceleración debida al cambio de la dirección del vector velocidad
- Movimientos con aceleración constante: Movimientos acelerados (MRUA, la caída libre)

A. M.R.U.: Movimiento Rectilíneo Uniforme.





- La trayectoria es una línea recta.
- Su velocidad es constante. Además, su velocidad no cambia de dirección por lo que no existirá aceleración normal.


Ecuaciones: v = cte
                   x(t) = x 0 + v t; donde x0 es la posición inicial e indica la distancia desde el origen.


Gráficas:

La gráfica x-t es una línea recta. La inclinación (pendiente) nos da la velocidad. El punto de corte con el eje vertical da x0


EJERCICIO 5: Piensa en tres ejemplos para cada uno de los casos de las gráficas anteriores.

EJERCICIO 6:  ¿Por qué decimos que cuanto mayor pendiente en la gráfica x-t mayor velocidad?


B. M.R.U.A.: Movimiento Rectilíneo Uniformemente Acelerado.



- La trayectoria es una recta
- La aceleración es constante

Como vimos, la aceleración mide la rapidez con la que varía la velocidadSe mide en m/s2. Así, una aceleración de 5 m/s2 indica que la velocidad aumenta a razón de 5 m/s cada segundo.

Llamaremos indistintamente MRUA tanto a los movimientos acelerados como los desacelerados. Desde el punto de vista físico, la única diferencia que existe entre ellos es el sentido del vector aceleración.


Ecuaciones:
v(t) = v0 + a t
x(t) = x0 + v0 t + ½ a t 2
Donde:
v0 = velocidad cuando t =0
x0 = distancia al origen cuando t =0
x(t) = distancia al origen (puede que no coincida con el espacio recorrido). Depende del tiempo (variable independiente)
t = 0, significa cuando empieza a contarse el tiempo o cuando se aprieta el cronómetro


El signo de la aceleración y de la velocidad depende del sistema de referencia que tomemos, no de que el cuerpo acelere o frene. Si consideramos positivo el sentido de avance del cuerpo una aceleración es negativa si va en contra del avance del cuerpo y positiva si va a su favor.
Por tanto, un cuerpo frena si su aceleración va en sentido contrario de la velocidad y acelera si ambas van en el mismo sentido.
Lo normal es tomar el sentido positivo como el sentido positivo del eje X (cuando el movimiento es en una sola dimensión, claro).

EJERCICIO 7:  Interpreta las siguientes gráficas.





EJERCICIO 8:  Se habla de caída libre cuando estudiamos como caen los cuerpos en la Tierra por efecto de la aceleración de la gravedad, ¿cómo cambiarían las ecuaciones de ese caso particular de MRUA?



En el siguiente enlace puedes repasar las gráficas de los distintos tipos de movimientos

C. M.C.U.: Movimiento Circular Uniforme.



- La trayectoria es una circunferencia.
- La velocidad es constante

EJERCICIO 8:  ¿Cómo estudiarías el movimiento de una noria:
a) midiendo el ángulo girado o 
b)el arco de circunferencia recorrido en un intervalo de tiempo?


Si se considera un punto girando en una circunferencia es fácil concluir que es mucho más sencillo medir el ángulo girado en un intervalo de tiempo que el arco recorrido (espacio). Por esto se  define la velocidad angular (ω) como la rapidez con que se describe el ángulo (φ) o, mejor aún, la velocidad angular es el ángulo descrito por unidad de tiempo.



Como habrás observado el MCU se describe con magnitudes angulares, no lineales;

1. Ángulo descrito o girado
2. Velocidad angular
3. Aceleración (centrípeta)

En una circunferencia se describe un radián como aquel ángulo cuyo arco es igual al radio.







 *El período se mide en Hz o s-1

EJERCICIO 9:  ¿Coinciden su desplazamiento y su trayectoria? Explícalo.

No coinciden porque la trayectoria es un circunferencia. Imaginad una noria en movimiento, pasado cierto tiempo vuelves a estar en la misma posición. Para un observador que esté en tierra (fuera del movimiento) y que deje de mirar y vuelva a mirar de nuevo, puede parecerle que no ha existido movimiento alguno. 



Al ser un movimiento uniforme la velocidad (lineal o tangencial, v) siempre es la misma, pero va cambiando de dirección. Por tanto, hay un cambio en un componente del vector velocidad, la dirección, por lo que existe aceleración. Para distinguirla de la aceleración que siempre has estudiado (la aceleración tangencial at) a esta aceleración se le llama aceleración normal o centrípeta (an o ac).





El vector aceleración tiene 2 componentes:

a) La aceleración tangencial, con misma dirección y sentido que la velocidad.
b) La aceleración centrípeta o normal, dirigida hacia el centro de la circunferencia descrita por el movimiento.

 La aceleración centrípeta está relacionada con la fuerza centrípeta (Tema 2) y es la que posibilita que un vehículo tome las curvas sin salirse de la carretera:



EJERCICIO 10:  Un disco gira a 300 rpm, sobre él hay dos cuerpos, uno que gira a 1 cm del centro del disco y otro a 2 cm, responde:
a) ¿Cuál gira con más velocidad angular y cual con más velocidad lineal? 
b) Calcula el período y la frecuencia de este movimiento.

EJERCICIO 11: Demuestra la expresión que relaciona la velocidad lineal y la angular.



REFUERZA Y AMPLIA LO APRENDIDO:

Para aclarar ideas sobre la aceleración normal y el movimiento circular uniforme: aquí.

Ejercicios de revisión tema cinemática (Para descargar los documentos tenéis que pulsar en "Télécharger")


Para quien quiera profundizar algo más en el tema que pulse aquí

IMPORTANTE: Para reforzar conceptos sobre el MCU (ANIMACIONES y EJERCICIOS INTERACTIVOS




DESCARGA EL TEMA AQUÍ
DESCARGA APUNTES SOBRE MCU 1 y MCU 2




viernes, 29 de enero de 2016

EL MOVIMIENTO (CINEMÁTICA)



TEMA 1: LA CINEMÁTICA. EL MOVIMIENTO.



1. INTRODUCCIÓN A LA CINEMÁTICA.

2. MAGNITUDES CINEMÁTICAS. VECTORES.
3. MAGNITUDES CINEMÁTICAS Y TIPOS DE MOVIMIENTOS.
   3.1. TRAYECTORIA
   3.2. DESPLAZAMIENTO
   3.3. VELOCIDAD. 
          - M.R.U.
   3.4. ACELERACIÓN. 
          - M.R.U.V . = M.R.U.A.
4. EL MOVIMIENTO CIRCULAR UNIFORME (M.C.U.)

1. INTRODUCCIÓN A LA CINEMÁTICA.
https://blogger.googleusercontent.com/img/proxy/AVvXsEiuAGSHY8rl-J7f0UoBO3XLL-H5jx3StUCGRNUju5d-gVRwEkpuD4z8LhkFQPDqyv-m5YHOR3ww_hLBn2tM-S4tIa9Ys1BiZoj_k1IgsqeOav3YEdjXfxa3QOCPlGVREIbsWuvul7DwNwFMmc0J7kUicHSgvcqHicmE47oRBQ6BFCVhy1HiW9LEVLIfg4LB8fck7spAy7ulV-ZhizHdjEC8=


Situación 1:



En una hoja que está siendo arrastrada por la corriente río abajo se encuentran dos hormigas. Una afirma que se están moviendo, la otra le dice que no. ¿Cuál lleva razón? ¿Y si las hormigas fueran observadas desde la Luna? ¿Se estarían moviendo?


Situación 2:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEifPRA3Subh6UIkOuVr0Ha7WddIeeJZF7LdITfDzZoiUA3Fj6tK0SDFNkyIr69hmp5BWBCTAKWecB05zyiR9TLdEcbYpxyA5OVkc7FPHBczK7jggM_sHMO847Vq3p3AKuWm5YFEg0fINcQJ/s640/palo+golf.jpg
Situación 3:


No es lo mismo describir el movimiento de un coche observado desde la acera mientras esperamos para cruzar por un paso de peatones, que observarlo desde dentro de un coche lo está adelantando, ¿verdad?



CONCLUSIONES:

https://blogger.googleusercontent.com/img/proxy/AVvXsEiw22n1cHCYBUsAUneadYpJ-BzgV53j-AlwaWnfGiu1NhLmQG33Bt4NKo-3YvgX9CYwt7o1YlCHVAMrel8moQ_CtJSFUN21KDimtKG-rL4-DplyeBZipv7I6_63orYvLPFWuHug_053MiWA8ASAPBuNBU6x3LMQzOqTRC2CWVjmDuwDZUzOTEgZLaY=

- El movimiento es relativo. Un cuerpo está en movimiento si  en el transcurso del tiempo cambia su posición respecto a un punto fijo que denominaremos Sistema de Referencia (SR).


- Al contrario, diremos que un cuerpo está en reposo si su posición respecto al SR no cambia durante el tiempo que estemos observando.
Por tanto, es importante para describir un movimiento indicar respecto a qué sistema de referencia se han tomado las medidas. En Física utilizaremos los ejes cartesianos XYZ.  Su origen (O) es el punto desde el que medir distancias o desde el cual determinemos la posición del cuerpo en movimiento (móvil).  



Concluimos que tanto reposo como movimiento son conceptos relativos ya que dependen del sistema de referencia elegido.

Tras esto, comencemos a estudiar cinemática. La cinemática (del griego, kineo, movimiento) es la parte de la Mecánica que estudia el movimiento sin tener en cuenta las causas que lo producen o lo modifican (las fuerzas).



2. MAGNITUDES CINEMÁTICAS. VECTORES.



Recuerda:


Magnitud es toda propiedad de un cuerpo o fenómeno que puede ser medida. Una magnitud cinemática es aquella que nos será útil para describir un movimiento.

En cinemática, tendremos en cuenta las siguientes magnitudes:
a) Magnitudes fundamentales:
- Longitud como espacio recorrido, desplazamiento y trayectoria (¡que no son lo mismo!) Recuerda que en el S.I. se expresa en metros (m).
- Tiempo (t), expresado en segundos (s) en unidades del S.I.

b) Magnitudes derivadas:

- Velocidad (v) (m/s, se lee metros por segundo)
- Aceleración (a) (m/s2, metros por segundo al cuadrado. También se expresa como m.s-2

Desplazamiento, velocidad y aceleración son magnitudes vectoriales porque para expresarlas correctamente hay que indicar su dirección y sentido.



¿Qué es un vector?


Como has visto, muchas magnitudes cinemáticas son vectoriales. Un vector no es más que una herramienta matemática muy utilizada y necesaria en Física. Es un segmento orientado (similar a una flecha) y se suele representar con una letra minúscula o dos mayúsculas (origen y final) con una flecha arriba. En un vector se distinguen las siguientes partes o componentes: 

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiXdW0q_oqKlDNM-orRjZiaC8aFJhjo6RXPWV8XCZxQQBUi6Eq3QvmXjgYrUlY9tIwP5OgO-g22GKaL69mtfrVsFXs9mcAOoMELd4A3ZBe57SZJCTSAKckgUbGK8681yQJkqPYKO3xaLuwa/s1600/grafica-vectores...+maria.jpg
- La dirección es la línea que contiene al vector y forma cierto ángulo con los ejes XYZ. Una dirección tiene 2 sentidos, siendo el sentido hacia donde apunta la flecha del vector. 
- Punto de aplicación es el origen del vector. 
- Módulo es el tamaño que representa su valor o medida.

3. MAGNITUDES CINEMÁTICAS Y TIPOS DE MOVIMIENTO.


3.1. TRAYECTORIA.


Depende del Sistema de Referencia elegido para estudiar el movimiento. Se denomina trayectoria al camino seguido por el cuerpo estudiado durante su movimiento

El espacio (S) que recorre un cuerpo en su movimiento se define como la longitud de la trayectoria recorrida.


Llamamos posición (x) al lugar que ocupa el móvil en un instante respecto al sistema de referencia.

TRAYECTORIAS y MOVIMIENTOS. Según su trayectoria los movimientos pueden ser:
-  Rectilíneos: su trayectoria es una línea recta. 
Curvilíneos: su trayectoria no es recta, describe una línea curva.
- Circular: Su trayectoria describe una circunferencia.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjhHF2g0dyW6NNZTQxRo5m2mgpq679deKHL0ddzFxdFhx3lSa7qeiD5NOV0DhzPt4IcLEAUz6una10btZCkibGGMzyOAdisgvnlcC_xxw_5KzObEDo1pZ6EQkgsferJB5OE5ug5ixIlJ6L0/s640/image001.gif
https://blogger.googleusercontent.com/img/proxy/AVvXsEj_519MIV4w2W3cdoUJb9e-naWh4FXTHThomLvSaTX4hP5XqczDzQt5RqwyvOCaYug_DY3tI8PiZ9EnjxSB54vVGDhSCKr6ekpBliZjTJ13wUzIIXjVnrh-oN3Pw5ka4xWxkgoPVnYvELWY58768Md455T3FseqJd34-8YCkxf4ZUiWd9DjhrIWlOx4=
3.2. VECTOR DESPLAZAMIENTO (Δx).


Es la distancia en línea recta que existe entre dos puntos del recorrido en el sentido del movimiento. Solo coincide con la trayectoria cuando el movimiento es rectilíneo.

Simulador:http://www.educaplus.org/play-292-Distancia-y-desplazamiento.html

 Desplazamiento y espacio recorrido.
1)Un móvil en un instante determinado se encuentra en la posición (1,6), unos segundo más tarde, pasa a ocupar la posición determinada por el punto (3,7), determina gráficamente cuál es su desplazamiento y su trayectoria.

2)       Calcula el desplazamiento en los siguientes casos:
a) Un coche se aleja de tu ciudad y cuando decidimos estudiar su movimiento se encuentra a 1500 m de Chiclana, minutos más tardes se encuentra a 3700 m. ¿Cuál ha sido su desplazamiento? ¿Y su espacio recorrido?
b) El coche anterior se acerca a la ciudad. Primero lo encontramos a 3700 m y luego a 1500 m. Calcula su desplazamiento.  
c) Lanzamos desde la altura de un acantilado a 20 m de altura una piedra hasta el mar, ¿cuál ha sido su desplazamiento? ¿Y su espacio recorrido?

3.3. VELOCIDAD (v). 
A) Rapidez vs. Velocidad.
B) Velocidad media y velocidad instantánea.
C) Cantidad de movimiento y energía cinética.
D) Velocidad y tipo de movimiento.
E) Movimiento Rectilíneo Uniforme (M.R.U.)

A) Rapidez vs. Velocidad.

La rapidez y velocidad no son lo mismo. Son dos magnitudes físicas que suelen confundirse:
- La rapidez es una magnitud escalar que relaciona (divide) el espacio recorrido y el tiempo empleado.
- La velocidad es una magnitud vectorial que relaciona el cambio de posición (desplazamiento) con el tiempo.

Ejemplo: Una persona camina desde A hasta B, retrocede hasta C y retrocede de nuevo para alcanzar un punto D. Calcula su rapidez media y su velocidad media. ¿Son lo mismo? Solución

https://blogger.googleusercontent.com/img/proxy/AVvXsEi4uXQPXOoV0KLszuDjLaAobOzLZcG56pAAOziR3wnMo8C-z_Kobl6Pb3BMRtxsG_4xkHU7qt6Gh2wmTkJmyhTAaNqay9CcuefDvbhFuMV3pl0T-t9hO4bWr3ePBBpFx12bAjWQ-Bq1Zyx90ayKiTTc=

Centrémonos en la velocidad. Es la magnitud física que estudia la variación de la posición de un cuerpo en función del tiempo respecto a un determinado sistema de referencia. En el SI sus unidades son m/s; aunque también se puede expresar de otras formas en función del móvil en estudio: m/min, km/h, cm/s,  etc. Es un vector, su modulo se llama celeridad y su signo nos informa de la dirección del movimiento; positivo, si es hacia la derecha o negativo, si es hacia la izquierda. 


B) Velocidad media y velocidad instantánea. 

Distinguimos entre velocidad media y velocidad instantánea.


- VELOCIDAD MEDIA:
https://blogger.googleusercontent.com/img/proxy/AVvXsEhAGNIGedtenVaU8kLWL-tryNe0TChQuQBOiQL_k2AK6bVUO00Z_J5utKnxZqSQioo6YCSzL8BQMCvRQTJbyfTKM3CVOy-l_El356zb9CuDcxUjctC056_65qGtX6LVhBVjnvh71dFOlgqz4okmsP9fIzFdIjoJpnOU8brwUMGSwSM=
Se calcula dividiendo el desplazamiento entre el tiempo que el móvil ha tardado en recorrerlo. 


https://blogger.googleusercontent.com/img/proxy/AVvXsEgeEJ9pAel7c4x7aViOvtAU2KelOmLqtDtsibIF8jIVeXReP7Edlsxy9lZ-0NMB6UXmofE1HVkLVceK4JV97kYKXwBSzlftciPDXQONAvrYjzhNN71_UuEv_CDakGZnYpFZrhNyO-yJ52lvF1ANolFvU6IW3N9uvPB9X9JXd6sk7VNyxlkvi1JGqwdLTP_CEBXGdI6JDxrCLb5ZrcXeNhg=







- VELOCIDAD INSTANTÁNEA:


Es la velocidad que nos indicaría un velocímetro, es decir, la velocidad en un instante determinado. Llegaríamos a conocerla si conocemos el desplazamiento efectuado en un tiempo infinitamente pequeño.

https://blogger.googleusercontent.com/img/proxy/AVvXsEjIMZDzhXq_6PtvIaAHDAfRc1q4wLi3rAKmsKsRNKS017RiEuGUmJdE51zM2UlwTRjNPy8XpYCD5k32qgbjEIow61DRdWeVd3yksW2XYdc3o7NPGuvMR8LD-fpQw2nFrPZutaS7SIByqVnTbM8wL7YQ3Em8eRAZbXUuZVBCc_bCMbaOMqUcRm-KGjL9SQk9vAUD51CnfgFMo_G8KGX8FhBei4Ln2Fx1_VIfIuEybsXN=
La velocidad instantánea es un vector cuya dirección y sentido coinciden con los del vector desplazamiento.


 Velocidad y rapidez.
a) ¿Quién es el más rápido de tu clase? ¿Y la más rápida? 
b) Calcula la velocidad media de un coche que tarda 2 horas en recorrer 150 km en línea recta.
c) Averigua la velocidad media en metros por segundo (m/s) y en kilómetro por hora (km/h) de un peatón realizando una caminata y  corriendo.  
d) Calcula la rapidez media (en km/h y m/s) de Alberto Contador, el último ciclista español en ganar el Tour de Francia (2009) si tardó 85 horas, 48 min y 30 s en recorrer 3.459 km
e) Según la DGT el límite máximo de velocidad en zona urbana es 50 km/h, si un coche tarda 10 minutos en cruzar una ciudad por una avenida de 1,5 km, ¿está el conductor infringiendo los límites de velocidad? 
f) La distancia Chiclana - Madrid es 656 km, ¿a qué velocidad circularía un camión que tardara 5 horas en llegar? ¿Estaría incumpliendo la ley? ¿Y si en lugar de un camión fuera un automóvil? (La velocidad máxima permitida para un camión o un vehículo articulado es de 90 km/h en autovía y autopistas).


g) Un móvil se encuentra a 2 m del SR, si tras 30 s, su posición final es de 140 m, ¿cuál es su velocidad media? ¿Y su rapidez media?

h) Un avión vuela a 8 000 m de altura cuando pasa sobre nuestro sistema de referencia que se encuentra a 5.000 m sobre el nivel del mar. En un instante determinado, el piloto decide descender hasta los  5 000 m, encontrándose a 7.000 m de distancia en la horizontal desde nuestra posición. Si el descenso ha sido realizado en línea recta y ha tardado 80 segundos en realizarlo, ¿con qué velocidad media ha realizado su maniobra?


ACTIVIDADES 3: Distancias a partir de velocidades y tiempo.



a) Calcula el espacio recorrido por un móvil que se desplaza en una trayectoria rectilínea de velocidad constante a 15 m/s durante 20 s.

b) Calcula el espacio recorrido por un elefante que se desplaza a su velocidad máxima de 40 km/h durante 40 minutos.
c) La velocidad de la luz es aproximadamente 300.000 km/s, ¿cuánto tiempo tarda en recorrer la distancia que hay del Sol a la Tierra (150 000 000 km)?

C) Cantidad de movimiento y energía cinética.


- La cantidad de movimiento o momento lineal (p) es una magnitud física derivada y vectorial. Informa del "ímpetu" o del "poder" que tiene un objeto en movimiento, por ello se dice que es "una medida de un movimiento en sí". Es directamente proporcional a la masa y la velocidad de un móvil: A mayor masa y a mayor velocidad, mayor cantidad de movimiento. 


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEioNcBhKU9N82XMyPEH2WhqXQfsHSKrQdwDpiQial_rPFfzVYYhfPcnmfGBVDF1QzdMfGt5X7Uv3MP1-oJ4O2D8vnUNQWzmOhPoKe_1I80SWKmKmoyXzddMvXglow8kijlwms-sBBFeYVnP/s640/Momento+lineal.jpg
- Se denomina energía cinética (Ec) a la energía que tienen los cuerpos por el hecho de estar en movimiento. Su valor depende de la masa del cuerpo (m) y de su velocidad (v):


Ec= 1/2 m. v2  (1 J = 1 kg.m2.s-2)


ACTIVIDADES 4: Cantidad de movimiento y energía cinética.

1. Calcula la cantidad de movimiento y la energía cinética. ¿En qué casos es mayor?:
a) Un camión de cinco toneladas que circula a 40 km/h. 
b) Una moto de 200 kg que se mueve a 250 km/h.
2. Compare la energía cinética en los siguientes casos:
a) Una gacela de Mongolia que pesa 70 kg y corre a 100 km/h.
b) Un elefante africano que pesa 5 toneladas y se mueve a 5 km/h.
c) El elefante del ejemplo anterior a 20 km/h.
d) Un corredor de 80 kg a 10 m/s . 
e) ¿Tiene alguno de los anteriores mayor energía cinética que un coche de 500 kg que circula a 100 km/h?

CURIOSIDADES. Lectura del siguiente artículo: ¿A qué velocidad máxima puede correr un ser humano? http://www.medciencia.com/a-que-velocidad-maxima-puede-correr-un-ser-humano/
D) VELOCIDAD y TIPO DE MOVIMIENTO.
Según su velocidad, se dice que un movimiento es uniforme o variado:
- Uniforme: el valor de la velocidad no cambia. Ejemplos: Movimiento Rectilíneo Uniforme (M.R.U.) y Movimiento Circular Uniforme (M.C.U., en este caso no cambia el módulo de la velocidad, pero sí su dirección).
- Variados: No uniformes porque su velocidad aumenta o disminuye, acelerado o desacelerado. Ejemplos: Movimiento Rectilíneo Uniformemente Variado (MRUA).
https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcQYtlw3v0JnUoXU--fbq3Jfbz0Lxn_Y4Rv4gyAxANOqGbdiPuMG
E)  M.R.U.: Movimiento Rectilíneo Uniforme.

- Es el caso más simple de movimiento.
- La trayectoria es una línea recta. 
- La velocidad es constante.

Ecuaciones:   v = cte
                    x(t) = x 0 + v t; donde x0 es la posición inicial e indica la distancia desde el origen.


¿De dónde sale la ecuación de la posición?


Gráficas: Visitemos el siguiente applet para el estudio de las gráficas del MRU: http://www.educaplus.org/play-238-Graficas-del-movimiento.html

La gráfica x-t es una recta con pendiente positiva o negativa. La inclinación (pendiente) nos da la velocidad. El punto de corte con el eje vertical (eje Y) nos da la posición inicial, x0
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEikkBydoVXkbsm0Xz2ANG8DLhU1pMrdcKPOo6dKQPP0nMdg6tLzWjcBfHVmDHOL7U50dKCub-HwTr2fRtZ3515FWZQkXSXoOFlwPOyM8wN8Ohwurt_FTBCPvYD-9a9v_yHQFrrhsivkIHA3/s1600/MRU.jpg




















El sentido común de la Física: Observa que no existe movimiento en la parte negativa del eje X (¿puede ser el tiempo negativo?).

ACTIVIDADES 5: MRU 


1)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgGwQHg8DjeGMgP2hTPXhZt12YHRQournM9VW9WRk198NJohYI4Z7zaMyXkrjjWfRBxymzfZ6OSqDGQqs803wLsDlzGe-4uwvkp1fruMHRUsA0otsi7ZthB35xt8DPu0mnhAettRERyqopN/s640/MRU+1.jpg


2) https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiXZq2Xlffb4kRDRwQOrrNgJaQ4ZpDtixfkDmbDhpY0tMxlN99SNYW_74p6jDwdEgIOfBcwF55wIcYXOo9_46BG9cDY32uncJ_UbJ5d1vZ2_zII66cE9YB3z3tDrcazxAr3hlZ8sMGYHdQZ/s640/MRU+2.jpg



3) Piensa en tres ejemplos para cada uno de los casos de las gráficas anteriores? ¿Por qué decimos que cuanto mayor pendiente en la gráfica x-t mayor velocidad?



ACTIVIDADES 6: Problemas de cinemática (MRU) de la hoja de revisión del tema, del 1 al 10.


3.4. ACELERACIÓN (a).
A) Aceleración media y aceleración instantánea.
B) Movimiento Rectilíneo Uniformemente Variado (MRUV)


A) Aceleración media y aceleración instantánea.


Se define ACELERACIÓN como la variación de la velocidad respecto al tiempo. Su unidad en el SI es m/s2 o m.s-2.

Existe aceleración siempre que la velocidad de un cuerpo cambie ya sea porque: Aumenta su velocidad (acelera), disminuye su velocidad (frena) o cambia de dirección (gira).


 Aceleración.

a) Calcula la aceleración de un coche que va con una velocidad de 80 km/h y pasa a 120 km/h  en 8 segundos.
b) Del caso contrario, en el que disminuye la velocidad. ¿Qué te indica un signo negativo?.
c) Determina la aceleración de frenado de un automóvil que inicialmente se mueve con una velocidad de 120 km/h, sabiendo que tarda 20 s desde que el freno es accionado hasta detenerse completamente.
d) ¿Qué es el tiempo de reacción? ¿Qué diferencia hay entre distancia de reacción y distancia de frenado? Respuestas aquí
e) Un cuerpo que va con una velocidad de 4 m/s frena de repente con una aceleración de 0,5 m/s2 calcula cuánto tiempo tarda en detenerse.

No te habrá costado mucho llegar a su expresión matemática o fórmula:

- ACELERACIÓN MEDIA: Estudia el cambio de velocidad en un intervalo de tiempo.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiyNOggDAakkcN_atKvtKqEhG1Ota-5DGxykO9P6-S1clZ4DrxSFIRfRDvhUlI2AavpMZSjxVfLdW8pJrkVTjiKxQcNxP9Ppp53x6iM5Z08KWNEziWtFDlfk6AYgueZxvQBaOz5SamT3SZL/s400/Aceleraci%C3%B3n+media.jpg
- ACELERACIÓN INSTANTÁNEA:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgCYfx3KTqOZlU_rxsim12Juju-Z2Gm-DNQOwM61Scifljqd6vNBA2V8tQAvmqh1HB4S1XeB-u0RHxJ-iW76s6jAY5YLk2nqyNQIbJhUesFRlZEdBgreUSnCAc7SHDjfcuJ0KecGOZk1acp/s200/Aceleraci%C3%B3n+instant%C3%A1nea.jpg

B) Movimiento Rectilíneo Uniformemente Variado (MRUV)

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcQihn5zynS-l26aTl9fQmSb3USWqWiWuXmzax5e6yBM8X11e5JR
- La trayectoria es una recta

- La aceleración es constante

Como vimos, la aceleración mide la rapidez con la que varía la velocidad. Se mide en m/s2.

Una aceleración de +5 m/s2 indica que la velocidad aumenta a razón de 5 m/s cada segundo. Y, por el contrario, una aceleración de -5 m/ssignifica que el vector aceleración es contrario a la velocidad disminuyéndola. 
Nosotros, para simplificar terminología, llamaremos indistintamente MRUA tanto a los movimientos acelerados (a > 0) como a los desacelerados (a < 0). En 4º curso estudiaremos solo los movimientos que tienen lugar en una sola dimensión (eje X o eje Y).


Ecuaciones: (si elegimos el eje X)
v(t) = v0 + a t
x(t) = x0 + v0 t + ½ a t 2
Donde:
Las condiciones iniciales del movimiento son: x0 y v0
x= la posición inicial o la distancia al origen del eje X cuando t =0 
v= velocidad cuando t =0 o velocidad inicial.

x(t) = distancia al origen (puede que no coincida con el espacio recorrido). Depende del tiempo (variable independiente).

t = 0, significa "cuando empieza a contarse el tiempo, cuando comenzamos a estudiarlo”

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhjUft-NezjKgu5JpwXVDcS58kjWLvmLre0TrLnKpFykqZXNOuC36_DPRjz_yhDHGA-Pp0RQhr3kCn8JxNgD01TNPopMSfD7YmZQrVfJuowypqAkAEq3rJ3ckCzlj7bTrh10mEohT3GMCK4/s1600/MRUA.jpg

En muchas ocasiones el signo de la aceleración y de la velocidad depende del sistema de referencia que tomemos, no de que el cuerpo acelere o frene. Si consideramos positivo el sentido de avance del cuerpo una aceleración es negativa si va en contra del avance del cuerpo y positiva si va a su favor.

Por tanto, un cuerpo frena si su aceleración va en sentido contrario de la velocidad y acelera si ambas van en el mismo sentido.

Lo normal es tomar el sentido positivo como el sentido positivo del eje X (cuando el movimiento es en una sola dimensión, claro).



https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiqfuyX_LPKNkNkpNEl5bbD4E8ZL5p27mrOG8bMMOwN2UG_Zf1m5nOtBDG6YPMZWURtKdoK2AVFK0EFYANdkGJDcyZVkcCMfCvYMaouN5q72Y_PSngulGxE4JRmQQI64FrxuBSM7ZPXnRgD/s1600/44.jpg
ACTIVIDADES 8:


1.  Interpreta las siguientes gráficas.

2. Se habla de caída libre cuando estudiamos como caen los cuerpos en la Tierra por efecto de la aceleración de la gravedad, ¿cómo cambiarían las ecuaciones de ese caso particular de MRUA?




En el siguiente enlace puedes repasar las gráficas de los distintos tipos de movimientos


 Problemas de revisión


CAIDA LIBRE:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjdoMGTXv0G1JL6hvzzFTJuMPP6cvIEdG0heQvx7RrUzegU-v0ZmfwFOM6YaC9wsXdzRqcqz0uTYdZjWzjV-qrRhB2jAvz1oluwXKSV1AZ0-YUEMgQpmunHT2FN95v15ezsYXdsSm_JvQK_/s400/caida_libre%255B1%255D.gif
Se denomina caída libre al estudio del movimiento de un cuerpo bajo la acción del campo gravitatorio. Se trata de un MRUA en el eje Y, cuya aceleración es la aceleración de la gravedad que, aunque no es constante en todo el planeta, se suele tomar como 9,8 m/s2. Todos los cuerpos independientemente de su masa caen con la misma aceleración.

Ecuaciones del movimiento:

y(t) = y0 + v0t + 1/2gt2
v(t) = v0 + gt
a= g = 9,8 m/s2
Gráficas:
https://blogger.googleusercontent.com/img/proxy/AVvXsEiZWwqPJHW8HJO0flpXPE-rc04rIWpqrxTHxkEBXlc9VfhRCGl3Bek8NiM4bftM0hT6sS-vYkD8CShe-mlIgIXGNTGu2L8EwchNLdsfk8VG7I8LEvUn_SSKZhMELSS8sP17QUFqe6MfUYwWHAj6TgDLxdXhrx1n=